skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "An, Weiming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Plasma wakefield acceleration in the nonlinear blowout regime has achieved marked milestones in electron beam acceleration, demonstrating high acceleration gradients and energy efficiency while preserving excellent beam quality. However, this regime is deemed unsuitable for achieving positron acceleration of comparable results, which is vital for future compact electron–positron colliders. In this article, we find that an intense positron beam loaded at the back of beam-driven blowout cavity can self-consistently induce the focusing field and flatten the longitudinal wakefield, leading to stable, high-efficiency, and high-quality positron acceleration. This is achieved through the formation of an on-axis electron filament induced by positron beam load, which shapes the plasma wakefield in a distinct way compared to electron beam load in the blowout regime. Via a nonlinear analytic model and numerical simulations, we explain the novel beam loading effects of the interaction between the on-axis filament and the blowout cavity. High-fidelity simulations show that a high-charge positron beam can be accelerated with >20% energy transfer efficiency, ~1% energy spread, and ~1 mm·mrad normalized emittance, while considerably depleting the energy of the drive beam. The concept can also be extended to simultaneous acceleration of electron and positron beams and high transformer ratio positron acceleration as well. This development offers a new route for the application of plasma wakefield acceleration into particle physics. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Plasma-based acceleration (PBA) is being considered for a next generation linear collider (LC). In some PBA-LC designs for the electron arm, the extreme beam parameters are expected to trigger background ion motion within the witness beam, which can lead to longitudinally varying nonlinear focusing forces and result in an unacceptable emittance growth of the beam. To mitigate this, we propose to use quasi-adiabatic plasma density ramps as matching sections at the entrance and exit of each stage. We match the witness electron beam to the low density plasma entrance, where the beam initially has a large matched spot size so the ion motion effects are relatively small. As the beam propagates in the plasma density upramp, it is quasi-adiabatically focused, and its distribution maintains a non-Gaussian equilibrium distribution in each longitudinal slice throughout the process, even when severe ion collapse has occurred. This only causes small amounts of slice emittance growth. The phase mixing between slices with different betatron frequencies leads to additional projected emittance growth within the acceleration stage. A density downramp at the exit of an acceleration section can eliminate much of the slice and projected emittance growth as the beam and ion motion adiabatically defocuses and decreases, respectively. Simulation results from QuickPIC with Azimuthal Decomposition show that within a single acceleration stage with a 25 GeV energy gain, this concept can limit the projected emittance growth to only ∼2% for a 25 GeV, 100 nm emittance witness beam and ∼20% for a 100 GeV, 100 nm normalized emittance witness beam. The trade-off between the adiabaticity of the plasma density ramp and the initial ion motion at the entrance for a given length of the plasma density ramp is also discussed. 
    more » « less
  3. Plasma based acceleration (PBA) is being considered for a next generation linear collider (LC). In typical AsmPBA-LC designs, the extreme beam parameters are expected to trigger background ion motion, which can lead to longitudinally varying nonlinear focusing forces and result in emittance growth of the beam. While various schemes have been proposed to mitigate this at low beam energies, a solution to minimize the emittance growth in the later high energy stages of a multistage electron acceleration arm is yet to be found. In this paper, we propose to use an adiabatic plasma density ramp as a matching section that is able to match the witness electron beam to the low-density plasma entrance, where the beam initially has a large matched spot size so the ion motion effects are relatively small. As the beam propagates in the plasma density upramp (downramp), it is adiabatically focused (defocused) and its distribution maintains an equilibrium distribution throughout the entire process even when severe ion collapse has occurred. Simulation results from QPAD show that within a single acceleration stage, this concept can limit the projected emittance growth to only ∼2% for a 25 GeV, 100 nm normalized emittance witness beam and ∼20% for a 100 GeV, 100 nm normalized emittance witness beam. 
    more » « less
  4. Abstract Due to the highly nonlinear nature of the beam-loading, it is currently not possible to analytically determine the beam parameters needed in a two-bunch plasma wakefield accelerator for maintaining a low energy spread. Therefore in this paper, by using the Broyden–Fletcher–Goldfarb–Shanno algorithm for the parameter scanning with the code QuickPIC and the polynomial regression together with k -fold cross-validation method, we obtain two fitting formulas for calculating the parameters of tri-Gaussian electron beams when minimizing the energy spread based on the beam-loading effect in a nonlinear plasma wakefield accelerator. One formula allows the optimization of the normalized charge per unit length of a trailing beam to achieve the minimal energy spread, i.e. the optimal beam-loading. The other one directly gives the transformer ratio when the trailing beam achieves the optimal beam-loading. A simple scaling law for charges of drive beams and trailing beams is obtained from the fitting formula, which indicates that the optimal beam-loading is always achieved for a given charge ratio of the two beams when the length and separation of two beams and the plasma density are fixed. The formulas can also help obtain the optimal plasma densities for the maximum accelerated charge and the maximum acceleration efficiency under the optimal beam-loading respectively. These two fitting formulas will significantly enhance the efficiency for designing and optimizing a two-bunch plasma wakefield acceleration stage. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)